Skip Navigation

the Environmental and Energy Resources Library

Home Browse Resources Get Recommendations Forums About Help Advanced Search

A Single Technology for Remediating PDAs, Nitro/Nitrate Residues, PCBs, CAHs, Herbicides and Pesticides from Soils and Sludges with Na/Nh3

Polynuclear aromatic hydrocarbons (PNAs) from creasote wood treatment plants and nitrated organic residues from munitions/explosives/propellant manufacturing contaminate soils at over 120 sites, many in the Southeastern US. Polychlorinated biphenyls (PCBs) and other chlorinated compounds are distributed in soils, sludges, estuaries, etc. at over 400 sites in the United States. Chlorinated aliphatic hydrocarbons (CAHs), widely used for degreasing/cleaning engines, auto parts, electronic components and dry cleaning, occur as serious contaminants at 358 major hazardous waste sites in the United States. This demonstrates a national need for a variety of rapid remediation methods. CAHs migrate vertically through soils to form dense nonaqueous phase liquids (DNAPLs) on aquifer bottoms. Ex-situ methods of CAH decontamination/destruction are needed for soils, sludges, bulk zones (DNAPLs in the valdose zone) and industrial process wastes. We propose a single reduction technology to destroy PNAs, nitrated organics PCBs, CAHs and other chlorinated pesticides and herbicides using solvated electron chemistry (Na/NH3) at room temperature applicable to ex-situ and some in-situ treatments. Since nitro and nitrate compounds are readily reduced, we think Na/NH3 reduction can decontaminate soils around ammunition and ordinance plants.

Cumulative Rating: (not yet rated)
Date Of Record Release 2010-01-21 15:20:10
Description Polynuclear aromatic hydrocarbons (PNAs) from creasote wood treatment plants and nitrated organic residues from munitions/explosives/propellant manufacturing contaminate soils at over 120 sites, many in the Southeastern US. Polychlorinated biphenyls (PCBs) and other chlorinated compounds are distributed in soils, sludges, estuaries, etc. at over 400 sites in the United States. Chlorinated aliphatic hydrocarbons (CAHs), widely used for degreasing/cleaning engines, auto parts, electronic components and dry cleaning, occur as serious contaminants at 358 major hazardous waste sites in the United States. This demonstrates a national need for a variety of rapid remediation methods. CAHs migrate vertically through soils to form dense nonaqueous phase liquids (DNAPLs) on aquifer bottoms. Ex-situ methods of CAH decontamination/destruction are needed for soils, sludges, bulk zones (DNAPLs in the valdose zone) and industrial process wastes. We propose a single reduction technology to destroy PNAs, nitrated organics PCBs, CAHs and other chlorinated pesticides and herbicides using solvated electron chemistry (Na/NH3) at room temperature applicable to ex-situ and some in-situ treatments. Since nitro and nitrate compounds are readily reduced, we think Na/NH3 reduction can decontaminate soils around ammunition and ordinance plants.
Classification
Resource Type
Format
Subject
Source United States Geological Survey
Keyword Explosives Wastes, Nitrated Organics, Polynuclear Aromatic Hydrocarbons (PNAs) Demilitarization, Toxic Substances, Surface Drainage Synthetic Organics, Subsurface Drainage, Sludge, Reductions, Soil Remediation, Soil Decontamination, Polychlorinated biphenyls (PCBs), Chlorinated Aliphatic Hydrocarbons (CAHs), Pesticides, Herbicides, Hazardous Waste, Water Quality, Groundwater Quality, Dechlorination
Date Of Record Creation 2010-01-21 15:13:45
Education Level
Date Last Modified 2010-01-21 15:20:10
Language English
Date Record Checked: 2010-01-20 00:00:00 (W3C-DTF)

Log In:





Mission
EERL's mission is to be the best possible online collection of environmental and energy sustainability resources for community college educators and for their students. The resources are also available for practitioners and the public.

EERL & ATEEC
EERL is a product of a community college-based National Science Foundation Center, the Advanced Technology Environmental and Energy Center (ATEEC), and its partners.

Contact ATEEC 563.441.4087 or by email ateec@eicc.edu