Warning: strtotime() [function.strtotime]: It is not safe to rely on the system's timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected 'America/New_York' for 'EDT/-4.0/DST' instead in /home/eerl/public_html/lib/ScoutLib/ApplicationFramework.php on line 1126

Warning: Cannot modify header information - headers already sent by (output started at /home/eerl/public_html/lib/ScoutLib/ApplicationFramework.php:1126) in /home/eerl/public_html/lib/ScoutLib/ApplicationFramework.php on line 158
the Environmental and Energy Resources Library - An Excel Workbook for Identifying Redox Processes in Ground Water Skip Navigation

the Environmental and Energy Resources Library

Home Browse Resources Get Recommendations Forums About Help Advanced Search

An Excel Workbook for Identifying Redox Processes in Ground Water

The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed is only limited by the number of rows in Excel (65,536 for Excel 2003 and XP; and 1,048,576 for Excel 2007), and is therefore appropriate for large datasets.

Cumulative Rating: (not yet rated)
Date Of Record Release 2009-03-10 16:09:09
Description The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed is only limited by the number of rows in Excel (65,536 for Excel 2003 and XP; and 1,048,576 for Excel 2007), and is therefore appropriate for large datasets.
Classification
Resource Type
Format
Subject
Source United States Geological Survey
Selector Bates
Date Of Record Creation 2009-03-10 16:06:07
Education Level
Date Last Modified 2009-03-10 16:09:09
Language English
Date Record Checked: 2009-03-10 00:00:00 (W3C-DTF)

Log In:





Mission
EERL's mission is to be the best possible online collection of environmental and energy sustainability resources for community college educators and for their students. The resources are also available for practitioners and the public.

EERL & ATEEC
EERL is a product of a community college-based National Science Foundation Center, the Advanced Technology Environmental and Energy Center (ATEEC), and its partners.

Contact ATEEC 563.441.4087 or by email ateec@eicc.edu